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Abstract 
 
A fractional four-step finite element method for analyzing conjugate heat transfer between solid and unsteady vis-

cous flow is presented. The second-order semi-implicit Crank-Nicolson scheme is used for time integration and the 
resulting nonlinear equations are linearized without losing the overall time accuracy. The streamline upwind Petrov-
Galerkin method (SUPG) is applied for the weighted formulation of the Navier-Stokes equations. The method uses a 
three-node triangular element with equal-order interpolation functions for all the variables of the velocity components, 
the pressure and the temperature. The main advantage of the method presented is to consistently couple heat transfer 
along the fluid-solid interface. Five test cases, which are the lid-driven cavity flow, natural convection in a square cav-
ity, transient flow over a heated circular cylinder, forced convection cooling across rectangular blocks, and conjugate 
natural convection in a square cavity with a conducting wall, are selected to evaluate the efficiency of the method pre-
sented. 
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1. Introduction 

Conjugate heat transfer between solid and fluid flow, 
where heat conduction in a solid region is closely cou-
pled with heat convection in an adjacent fluid, is en-
countered in many practical applications. There are 
many engineering problems where conjugate heat 
transfer should be considered, such as in biomedical 
engineering, design of air-cooled packaging, heat 
transfer enhancement by finned surfaces, design of 
thermal insulation, design of solar equipment, heat 
transfer in a cavity with thermally conducting wall or 
internal baffle, etc. Most of the research works in this 
area employ the finite difference method, the finite 
volume method, the finite element method, and the 
meshless collocation method as the numerical tools. 

Convection heat transfer between the solid and the 
fluid flow is one of the most challenging problems for 
computational methods due to its inherent coupling 
between the governing equations of the fluid motion 
and the energy equation of the solid. This coupling 
effect can be seen noticeably at high Rayleigh num-
bers in free convection problems and at high Reynolds 
numbers in forced convection problems. Another main 
reason which increases the difficulty in solving the 
convection heat transfer problems is due to the non-
linear phenomenon of the convection terms presented 
in both the momentum equations and the energy equa-
tion. Some algorithms have been proposed and applied 
to analyze these problems, such as the velocity-
pressure segregated method [1-3] based on the 
SIMPLE algorithm and the unsteady algorithm based 
on the fractional step method [4-7]. These two algo-
rithms are similar in that they correct the computed 
velocity components by using the pressure derived 
from the continuity equation. 
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Some of the studies in this research area, however, 
employ the finite difference and the finite volume 
methods as the numerical tools. He, et al. [8] studied 
the conjugate problem using an iterative FDM/BEM 
method for analysis of parallel plate channel with con-
stant outside temperature. Sugavanam, et al. [9] inves-
tigated the conjugate heat transfer from a flush heat 
source on a conductive board in laminar channel flow. 
Chen and Han [10] showed the solution of a conjugate 
heat transfer problem using a finite difference 
SIMPLE-like algorithm. Schäfer and Teschauer [11] 
used the finite volume method to analyze both the 
fluid flow behavior and the solid heat transfer together. 
Aydin [12] studied a conjugate heat transfer phe-
nomenon through a double pane window by using the 
finite difference technique. Results from these prob-
lems showed that both the finite difference and the 
finite volume methods can perform very well on the 
problems of interest, but some assumptions on heat 
transfer coefficients have to be made in order to com-
pute the temperatures along the fluid-solid interface. 
Furthermore, the unknown temperature and the heat 
flux at the fluid-solid interface are normally deter-
mined in an iterative way, usually through the use of 
an artificial heat transfer coefficient. 

At present, very few computational procedures us-
ing the finite element method have been proposed in 
the literature to analyze such conjugate heat transfer 
problems. Misra and Sarkar [13] used the standard 
Galerkin formulation to solve the continuity, momen-
tum and energy equations simultaneously. Malatip, et 
al. [14] developed a combined SUPG and segregate 
finite element method for analyzing steady conjugate 
heat transfer problems. Al-Amiri, et al. [15] used finite 
element method to study the steady-state natural con-
vection in a fluid-saturated porous cavity of a conduct-
ing vertical wall. 

The objective of this paper is to develop a second-
order time accurate numerical algorithm for analyzing 
conjugate heat transfer between solid and unsteady 
viscous thermal flow. The paper extends the splitting 
finite element algorithm proposed by Choi, et al. [5] to 
conjugate heat transfer problem [14]. Triangular finite 
element is employed herein for deriving the associated 
finite element equations. These triangular finite ele-
ments are used together with an adaptive meshing 
technique to improve the solution accuracy and com-
putational efficiency. The finite element algorithm 
employs the four-step fractional method with an equal-
order triangular finite element. The idea of the consis-

tent SUPG [16, 17] is included in the formulation as 
an upwind scheme. The time integration method is 
based on a semi-implicit fractional step method and 
the resulting nonlinear momentum and energy equa-
tions are linearized without losing the overall time 
accuracy. 

The paper starts from describing the set of the par-
tial differential equations that satisfy the law of con-
servation of mass, momentums and energy. Corre-
sponding finite element equations are derived and the 
element matrices are presented. The computational 
procedure used in the development of the computer 
program is then briefly described. Finally, the finite 
element formulation and the computer program are 
then verified by solving several examples that have 
benchmark solutions and numerical solutions obtained 
from other algorithms. 
 

2. Theoretical formulation and solution proce-
dure 

2.1 Governing equations  

The governing equations for the conjugate heat 
transfer between the solid and fluid flow are pre-
sented briefly in this section. For unsteady incom-
pressible viscous thermal flow where the physical 
properties of the fluid and solid are independent of the 
temperature, the governing equations for flow and 
heat transfer in the solid can be written as follows, 
Continuity equation, 
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The governing differential equations above are to 
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be solved together with the interface conditions. 
These include the non-slip condition on the solid wall, 
while the temperature and heat flux along the 
fluid/solid interface must be continuous, 

 
, int , intf su u=  (2a) 

, int , intf sT T=  (2b) 

, int , int
f s

f s

T T
n n

α α∂ ∂=
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where n denotes the normal direction of the interface 
 
2.2 Fractional four-step method  

The governing differential equations are integrated 
in time by using the semi-implicit four-step fractional 
method previously proposed by Choi, et al. [5, 6]. 
The pressure gradient terms are first decoupled from 
those of the convection, diffusion and the external 
force terms. The second-order semi-implicit time-
advancement scheme of Crank-Nicolson is applied 
for both the convective and the viscous terms of Eqs. 
(1b-c). The pressure is then determined from the con-
tinuity equation and the velocity components are cor-
rected by the computed pressure, as follows, 
Step 1: 
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where t∆  is the time increment, ˆiu  and *

iu  are the 
intermediate velocities, and superscript n denotes the 
time level. The time increment of the semi implicit 
method is restricted to achieve a desired solution ac-
curacy, not by the numerical stability. Equation (3e) 
is also used for analyzing conduction heat transfer in 
solid by setting the velocity components, uj, to be zero. 
 
2.3 Finite element formulations 

The three-node triangular element is used in this 
study due to the simplicity of the element inter-
polation functions. The element assumes linear distri-
bution of the velocity components, the pressure, and 
the temperature as, 

 
( ),u x y ( ),i iN x y u=∑ { }N u= ⎢ ⎥⎣ ⎦  (4a) 

( ),v x y ( ),i iN x y v=∑ { }N v= ⎢ ⎥⎣ ⎦  (4b) 

( ),p x y ( ),i iN x y p=∑ { }N p= ⎢ ⎥⎣ ⎦  (4c) 

( ),T x y ( ),i iN x y T=∑ { }N T= ⎢ ⎥⎣ ⎦  (4d) 

 
where i = 1, 2, 3; and Ni are the element interpolation 
functions. 

The basic idea of the solution algorithm presented 
in this paper is to use the two momentum equations 
for solving both of the velocity components, use the 
continuity equation for solving the pressure, and use 
the energy equations for solving the temperature in 
solid and fluid regions. The finite element equations 
corresponding to the momentum, the continuity and 
the energy equations, are presented in next section. 

 
2.3.1 Streamline upwind Petrov-Galerkin method 
In the streamline upwind Petrov-Galerkin method, 

a modified weighting function, Wα , is applied to the 
convection terms for suppressing the non-physical 
spatial oscillation that may occur in the numerical 
solution. The weighting function is given by [17], 
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Fig. 1. Element sizes measured from corner nodes of a linear 
triangle. 

 

σ  = Pe 2coth
2 Pe
−  (6b) 

Pe  = min

2
U h
ν

 and U  = 2 2u v+  (6c) 

 
and Pe is the Peclet number, hmin = min(h1, h2, h3) is 
the minimum element size as shown in Fig. 1, and 
U  is mean resultant velocity. 

 
2.3.2 Temporal discretization  
The method of weighted residuals with the stream-

line upwind Petrov-Galerkin method is employed to 
discretize the finite element equations by multiplying 
Eqs. (3a-e) by weighting functions. Integration by 
parts is then performed by using the Gauss theorem to 
yield the element equations as shown in the steps 
below. 
Step 1: Discretization of the momentum equations, 

( )ˆ 1 ˆ ˆ
2

n
n ni i

i j i j
j

u uN d W u u u u d
t xα α

Ω Ω

⎛ ⎞⎛ ⎞− ∂Ω + + Ω⎜ ⎟⎜ ⎟ ⎜ ⎟∆ ∂⎝ ⎠ ⎝ ⎠
∫ ∫

 
ˆ1 1

2

n n
i i

j j j i

W u u pd W d
x x x x
α

αν
ρΩ Ω

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂+ + Ω = − Ω⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
∫ ∫

 

0ˆ (1 ( ))n ni
k i

j

uW n d g W T T d
xα αν β

Ω Ω

⎛ ⎞∂+ Γ + − − Ω⎜ ⎟⎜ ⎟∂⎝ ⎠
∫ ∫  (7) 

 
where Ω  is the element domain and Γ  is the ele-
ment boundary. 
Step 2: The intermediate velocity equations,  
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Step 3: Discretization of the pressure equation,  

To derive the discretized pressure equation, the 
method of weighted residuals is applied to the conti-
nuity equation, Eq. (1a), 

1n
i

i

uW d
xα

+

Ω

⎛ ⎞∂ Ω =⎜ ⎟∂⎝ ⎠
∫ ( )1n

i
i

W u d
x
α +

Ω

∂− Ω
∂∫   

 ( )1 0n
i iW u n dα
+

Γ

+ Γ =∫  (9) 

 
where ni are the direction cosines of the unit vector 
normal to element boundary. By substituting Eq. (3d) 
into Eq. (9), the following Poisson-type pressure equ-
ation is obtained, 
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In the above Eq. (11), the unknown 1n

iu +  may be 
approximated by ˆiu  computed earlier as suggested 
by Kim and Moin [18]. Such approximation gives the 
error that varies with the time step in the form, 
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Step 4: The velocity correction equations, 
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Step 5: The temperature correction equations, 
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The finite element equations in matrix from can 

then be derived by substituting Eq. (4) into Eqs. (7) – 
(13). The results are as follows: 
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In the above equations, the element matrices written 
in the integral form are, 
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The local time step is assumed as the minimum be-

tween the convective local time step and diffusive 
local time step as, 
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2.3.3 Computational procedure 
The computational procedure is described in this 

section and can be summarized as follows: 
1. A set of initial nodal velocity components, pres-

sures, and temperatures is given at time nt t= . 
2. Obtain the intermediate velocity components 

from Eqs. (14a) and (14b). 
3. Obtain the pressure, 1np + , from Eq. (14c) at 

time nt t t= + ∆ . 
4. Correct the intermediate velocity components, 

1n
iu + , from Eq. (14d). 

5. Obtain the temperatures, 1nT + , from Eq. (14e) at 
time nt t t= + ∆ . 

6. Go to step 1 and repeat the procedure until a de-
sired solution is obtained. 

 

3. Examples 

In this section, five examples are presented. The 
first example, lid-driven cavity flow, is chosen to 
evaluate the finite element formulation for the analy-
sis of transient viscous flow. The second and the third 
examples, natural convection in a square cavity and  

 

 
 
Fig. 2. Problem statement of the lid-driven cavity flow prob-
lem. 
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transient flow over a heated circular cylinder, respec-
tively, are used to illustrate the efficiency of the 
scheme presented for the analysis of transient viscous 
thermal flow. The last two examples, forced convec-
tion cooling across rectangular blocks and conjugate 
natural convection in a square cavity with a conduct-
ing wall, respectively, are used to illustrate the effi-
ciency of the scheme presented for the analysis of 

conjugate heat transfer problems. Adaptive finite 
element meshes with triangular elements are em-
ployed in the third and fourth to further improve the 
solution accuracy and computational efficiency. 

 
3.1 The lid-driven cavity flow 

The lid-driven cavity flow is one of the examples 

 

        
 
Fig. 3. Finite element model of the lid-driven cavity flow problem.               Fig. 4. Predicted u-velocity profile of y-direction on 

    x = 0.5 at Re = 100. 

 

 

 

 
Fig. 5. Predicted streamline, pressure contours and velocity profiles in the x and y directions at (a) Re = 1,000, (b) Re = 5,000,
and (c) Re = 10,000. 
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commonly selected for evaluating new numerical 
algorithms for analyzing viscous incompressible flow. 
The square cavity has no-slip condition along the 
bottom and the side walls, while the top-lid moves to 
the right at the horizontal velocity of one as shown in 
Fig. 2. The finite element model, consisting of 2,601 
nodes and 5,000 elements as shown in Fig. 3, is used 
in this study. 

Fig. 4 shows the comparative solutions of the u-
velocity profiles at the time of 1, 2, 3, and 4, all for 
the Reynolds number of 100. The results are com-
pared with those presented by Yagawa, et al. [19], 
and the steady-state solution of Ghia, et al. [20]. Fig. 
5 shows the predicted steady-state solutions as com-
pared to those presented in Ref. [20] for the Reynolds 
numbers of 1,000, 5,000 and 10,000, respectively. 
These figures show good agreement between the 
predicted solutions and the solutions obtained from 
other existing algorithms with time as compared to 
the results of Malan, et al. [23] and Sampaio, et al. 
[24]. In addition, table 1 shows the stream function 
values at the center of primary vortex and the first 
three vortices as compared to those from Ghia, et al. 
[20] and Choi, et al. [6]. 
 
3.2 The natural convection in a square cavity 

The second example for evaluating the finite ele-
ment formulation and validating the developed com-
puter program is the problem of free convection in a 
square enclosure. The square enclosure as shown in 
Fig. 6, is bounded by the two vertical walls with spe-
cified temperatures of one along the left side and zero  

 
 
Fig. 6. Problem statement and finite element model of the 
natural convection in a square cavity problem. 

 
along the right side, all other boundaries are insulated. 
The finite element model, consisting of 2,601 nodes 
and 5,000 elements, is also shown in the figure. Fig. 
7(a)-(c) shows the predicted temperature and vertical 
velocity component distributions at the cavity mid-
plane (y = 0.5) that are compared with the results 
from Sai, et al. [7]. The figures present the compari-
sons of the transient solutions for the three cases of 
Ra = 103, 104, and 105. These figures highlight good 
agreement of the predicted solutions and the solutions 
from Ref. [7]. Table 2 compares the average Nusselt 
numbers at the hot wall, 0Nu x= , obtained from the 
presented method and the results from the literatures 
[6, 7, 21, 22]. The table shows that the solutions from 
the method presented compare very well with the 
results from Ref. [21]. 

Table 1. Stream function values at the center of vortices for the lid-driven cavity flow. 
 

 Re Ghia, et al. [20] Choi, et al. [6] Present 

Primary vortex 400 -0.1139 -0.1135 -0.1140 
 1,000 -0.1179 -0.1207 -0.1194 
 5,000 -0.1190 -0.1255 -0.1248 
 10,000 -0.1197 -0.1257 -0.1259 

Vortex 1 400 6.423 E-4 6.010 E-4 6.043 E-4 
 1,000 1.751 E-3 1.682 E-3 1.666 E-3 
 5,000 3.083 E-3 3.749 E-3 3.118 E-3 
 10,000 3.418 E-3 4.493 E-3 3.230 E-3 

Vortex 2 400 1.419 E-5 1.030 E-5 1.411 E-5 
 1,000 2.311 E-4 2.205 E-4 2.451 E-4 
 5,000 1.361 E-3 1.334 E-3 1.488 E-3 
 10,000 1.518 E-3 1.579 E-3 1.822 E-3 

Vortex 3 5,000 1.456 E-3 1.288 E-3 1.390 E-3 
 10,000 2.421 E-3 2.372 E-3 2.600 E-3 
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3.3 Transient flow over a heated circular cylinder 

To illustrate the performance of a fractional four-
step finite element method for solving transient vis-
cous thermal flow, the problem of a flow past a cylin-
der is selected as the third example. Such flow past a 
cylinder is a fundamental fluid mechanics problem of 
practical importance. The flow field over the cylinder 

is symmetric at low values of the Reynolds number. 
However, as the Reynolds number increases, the flow 
begins to separate behind the cylinder causing vortex 
shedding which is an unsteady phenomenon. The 
problem statement and the boundary conditions are 
shown in Fig. 8. Uniform velocity and temperature 
profiles are assumed to enter the inflow boundary and 
the pressure is set to zero at the outflow boundary. 

Table 2. Variation of the overall Nusselt numbers. 
 

Average Nusselt number along hot wall (% difference from Ref. [21]) 
Ra 103 104 105 

de Vahl Davis [21] 1.117 2.238 4.509 
Choi, et al. [6] 1.143 (2.33%) 2.264 (1.16%) 4.530 (0.47%) 
Sai, et al. [7] 1.131 (1.25%) 2.289 (2.28%) 4.687 (3.95%) 

Leal, et al. [22] 1.118 (0.09%) 2.248 (0.44%) 4.562 (1.18%) 
Present 1.117 (0.00%) 2.234 (0.18%) 4.466 (0.95%) 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 7. Predicted temperature and vertical velocity component distributions of x-direction on y = 0.5 at (a) Ra = 103, (b) Ra = 
104, and (c) Ra = 105. 
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Fig. 8. Problem statement of the transient flow over a            Fig. 9. Finite element model of the transient flow over
heated circular cylinder.                                    a heated circular cylinder. 

 
 

 
                                               (a)                                                          (b)                                                         (c) 
 
Fig. 10. (a) u velocity, (b) streamline and (c) temperature contours, all at Re = 100 and Pr = 0.71. 
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The top and bottom boundaries are treated as slip 
flow with adiabatic condition according to Refs. [7, 
21, 22] while a non-slip condition is specified on the 
cylinder surface. A finite element model consisting of 
6,485 nodes and 12,734 triangles, as shown in Fig. 9, 
is used in this study. Fig. 10 shows the transient u 
velocity, streamline and temperature contours at times 
t = 10, 20, 30, 50, and 80. These solutions are for the 
case of Reynolds number, Re = 100 and Prandtl num-
ber, Pr = 0.71. Fig. 11 presents the vertical velocity 
component at the mid-point of the flow outlet (point 
Q in Fig. 8) that varies with time as compared to the 
results of Malan, et al. [23] and Sampaio, et al. [24]. 
Fig. 12 shows the predicted time-averaged local Nus-
selt number distribution around the circum-ferential 
of circular cylinder as compared to that given by 
Yoon, et al. [25]. It should be noted that the average 
Nusselt number, Nu , was also suggested by Lange, 
et al. [26] as, 

 

  
Fig. 11. Vertical velocity component at point Q (Fig. 8) for 
the transient flow over a heated circular cylinder. 
 
 

 
 
Fig. 12. Time-averaged local Nusselt number distribution 
around the circumferential of circular cylinder for Re = 100. 

0.5Nu 0.082Re 0.734Reλ= +  

where 0.0850.05 0.226Reλ = +  
 
The present result for the averaged Nusselt number 

is 5.058, which is 1.36% different from the solution 
of the equation above. 

 
3.4 Forced convection cooling across rectangular 

blocks 

The problem statement of the fourth example, as 
shown in Fig. 13, is a flow between parallel plates 
with three heated fins. The fluid enters with a fully 
developed profile from the left side and leaves at the 
right side of the computational domain. The heat gen-
eration within the blocks is assumed to be constant 
and uniform at the value of 8Q =% . The finite ele-  
 

 
 
Fig. 13. Problem statement of forced convection cooling 
across rectangular blocks. 

 

 
 
Fig. 14. Finite element model for forced convection cooling 
across rectangular blocks. 

 

 
 
Fig. 15. Forced convection cooling across rectangular blocks 
(a) pressure contours, (b) streamline contours, and (c) tem-
perature contours. 
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Fig. 16. Comparison of the wall temperature distribution           Fig. 17. Problem statement and finite element model of the 
along solid-fluid interface for the three obstacles with pu-                   conjugate natural convection problem. 
blished results for Re = 100, 500 and 1,000, all at K = 10. 

 

 

 

 
 
Fig. 18. Predicted vertical velocity component and temperature distributions of x-direction on y = 0.5 at (a) Gr = 103, (b) Gr = 
104, and (c) Gr = 105, all at K = 5. 
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ment model, consisting of 5,653 nodes and 10,933 
triangles, is shown in Fig 14. Fig. 15 shows the pre-
dicted pressure, streamline and temperature contours 
at Reynolds number of 100 and 500, respectively, all 
at Pr = 0.7, the solid-to-fluid thermal diffusivity ratio, 

1sfα = , and the thermal conductivity ratio, K = 10. 
Fig. 16 shows the predicted temperature distribu-

tions along the fin’s surfaces as compared to the nu-
merical results from Davalath and Bayazitoglu [27] at 
Re = 100 and 1,000. These figures again highlight 
good agreement between the predicted solutions and 
the solutions obtained from the other existing algo-
rithms. 

Table 3. Variation of the overall Nusselt numbers. 
 

Average Nusselt number along interface (% difference from Ref. [28]) 
Gr 

Conductivity ratio, K  1 5 10 
103 Hriberšek and Kuhn [28] 0.87 1.02 1.04 
103 Present 0.87 (0.0%) 1.02 (0.0%) 1.04 (0.0%) 
104 Hriberšek and Kuhn [28] 1.35 1.83 1.92 
104 Present 1.35 (0.0%) 1.83 (0.0%) 1.91 (0.52%) 
105 Hriberšek and Kuhn [28] 2.08 3.42 3.72 
105 Present 2.08 (0.0%) 3.40 (0.58%) 3.70 (0.54%) 
106 Hriberšek and Kuhn [28] 2.87 5.88 6.78 
106 Present 2.83 (1.39%) 5.80 (1.36%) 6.69 (1.33%) 
107 Hriberšek and Kuhn [28] 3.53 9.07 11.25 
107 Present 3.45 (2.27%) 8.73 (3.75%) 10.88 (3.29%) 

 
 

 
                                                                 (a)                                                                          (b) 
 
Fig. 19. (a) Interface temperatures and (b) Interface heat fluxes, all at Gr = 105. 
 

 

 
                                                                 (a)                                                                          (b) 
 
Fig. 20. (a) Interface temperatures and (b) Interface heat fluxes, all at Gr = 107. 
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3.5 Conjugate natural convection in a square cavity 

with a conducting wall 

To further evaluate the efficiency of the schemes 
presented, the problem of conjugate natural convec-
tion in a square cavity with a conducting wall as 
shown in Fig. 17 is selected. The fluid in the cavity is 
heated from the higher temperature solid wall along 
the left side and maintained at zero temperature along 
the right side, all other boundaries are insulated. The 
finite element model for both the solid wall and fluid 
region consisting of 3,111 nodes and 6,000 elements 
is also shown in the figure. Fig. 18 shows the pre-
dicted vertical velocity component and temperature 
contours at the cavity mid-plane (y = 0.5) that vary in 
times for Grashof numbers of 103, 104 and 105, re-
spectively, all at Pr = 0.71, solid-to-fluid thermal dif-
fusivity ratio, 1sfα = , and the thermal conductivity 
ratio, K = 5. The temperature and the heat flux distri-
butions along the solid-fluid interface with the varia-
tion of conduction ratio, K, are shown in Figs. 14 and 
15 for Grashof numbers of 105 and 107, respectively. 

In addition, table 3 compares the predicted average 
Nusselt numbers along the interface, 0Nu x= , with the 
results using the boundary-domain integral method by 
Hriberšek [28]. The table shows good agreement of 
the average Nusselt numbers for both the temperature 
and the heat flux. 
 

4. Conclusions 

A combined fractional four-step finite element 
method and streamline upwind Petrov-Galerkin 
method (SUPG), for analysis of conjugate heat trans-
fer between solid and unsteady viscous thermal flow, 
was presented. The method combines a viscous ther-
mal flow analysis in the fluid region and a heat trans-
fer analysis in the solid region together. The Navier-
Stokes equations are solved by the streamline upwind 
Petrov-Galerkin method in order to suppress the non-
physical spatial oscillation in the numerical solutions. 
All the finite element equations were derived and 
presented in detail. The efficiency of the coupled 
finite element method has been evaluated by several 
examples that were previously analyzed by using 
other methods. These examples highlight the benefit 
of the combined finite element method that can simul-
taneously model and solve both the fluid and solid 
regions, as well as to compute the temperatures along 
the fluid-solid interface directly. 
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Nomenclature----------------------------------------------------------- 

g  : Gravitational acceleration 
Gr  : Grashof number, = gβ T (Th - Tc)L3 / ν2 
k  : Thermal conductivity 
Nu  : Local Nusselt number 
Nu  : Average Nusselt number 
Pe   : Peclet number 
p  : Fluid pressure 
Pr  : Prandtl number, = ν /α  
Q
~  : Heat generation per unit volume 
Ra  : Rayleigh number, = gβ T (Th - Tc)L3 / αν  
t  : Time 
T  : Temperature 
u  : x-component of velocity  
v  : y-component of velocity 
x  : Horizontal distance  
y  : Vertical distance 

 
Greek symbols 

α  : Thermal diffusivity, = k / ρc 
sfα  : Ssolid-to-fluid thermal diffusivity ratio,  

  = αs / αf  
Tβ  : Thermal expansion coefficient 

K  : Solid-to-fluid thermal conductivity ratio,  
  = ks / kf  
ν  : Kinematic viscosity, = µ / ρ 
θ  : Dimensionless temperature,  
  = (T - T0) / (Th - T0)  
ρ  : Density 
 
Subscripts 

i, j : Nodal quantities 
int : Interface 
o : Cold surfaces 
f : Fluid 
s : Solid 
 

References 

[1] J. G. Rice and R. J. Schnipke, An equal-order ve-
locity-pressure formulation that does not exhibit 



788  A. Malatip et al. / Journal of Mechanical Science and Technology 23 (2009) 775~789 
 

spurious pressure modes, Comput. Meth. Appl. 
Mech. Eng., 58 (1986) 135-149. 

[2] H. G. Choi and J. Y. Yoo, A streamline upwind 
scheme for the segregated formulation of the Na-
vier-Stokes equation, Numer. Heat Tranf. B-
Fundam., 25 (1994) 145-161. 

[3] N. Wansophark and P. Dechaumphai, Combined 
adaptive meshing technique and segregated finite 
element algorithm for analysis of free and forced 
convection heat transfer, Finite Elem. Anal. Des., 
40 (2004) 645-663. 

[4] B. Ramaswamy and T. C. Jue, Some recent trends 
and developments in finite element analysis for in-
compressible thermal flow, Int. J. Numer. Methods 
Eng., 35 (1992) 671-707. 

[5] H. Choi and P. Moin, Effects of the computational 
time step on numerical solutions of turbulent flow, J. 
Comput. Phys., 113 (1994) 1-4. 

[6] H. G. Choi, H. Choi and J. Y. Yoo, A fractional 
four-step finite element formulation of the unsteady 
incompressible Navier-Stokes equations using 
SUPG and linear equal-order element methods, 
Comput. Meth. Appl. Mech. Eng., 143 (1997) 333-
348. 

[7] B. V. K. S. Sai, K. N. Seetharamu and P. A. A. 
Narayana, Solution of transient laminar natural 
convection in a square cavity by an explicit finite 
element scheme, Numer. Heat Tranf. A-Appl., 25 
(1994) 593-609. 

[8] M. He, A. J. Kassab, P. J. Bishop, and A. Minardi, 
An iterative FDM/BEM method for the conjugate 
heat transfer problem–parallel plate channel with 
constant outside temperature, Eng. Anal. Bound. 
Elem., 15 (1995) 43-50. 

[9] R. Sugavanam, A. Ortega and C. Y. Choi, A nu-
merical investigation of conjugate heat transfer 
from a flush heat source on a conductive board in 
laminar channel flow, Int. J. Heat Mass Transf., 38 
(1995) 2969-2984. 

[10]  X. Chen and P. Han, A note on the solution of 
conjugate heat transfer problems using SIMPLE-
Like algorithms, Int. J. Heat Fluid Flow, 21 (2000) 
463-467. 

[11]  M. Schäfer and I. Teschauer, Numerical simulation 
of coupled fluid-solid problems, Comput. Meth. 
Appl. Mech. Eng., 190 (2001) 3645-3667. 

[12]  O. Aydin, Conjugate heat transfer analysis of dou-
ble pane windows, Build. Environ., 41 (2006) 109-
116. 

[13]  D. Misra and A. Sarkar, Finite element analysis of 

conjugate natural convection in a square enclosure 
with a conducting vertical wall, Comput. Meth. 
Appl. Mech. Eng., 141 (1997) 205-219. 

[14]  A. Malatip, N. Wansophark and P. Dechaumphai, 
Combined streamline upwind Petrov Galerkin 
method and segregated finite element algorithm for 
conjugated heat transfer problems, J. Mech. Sci. 
Technol., 20 (10) (2006) 1741-1752. 

[15]  A. Al-Amiri, K. Khanafer and I. Pop, Steady-state 
conjugate natural convection in a fluid-saturated po-
rous cavity, Int. J. Heat Mass Transf., 51 (2008) 
4260-4275. 

[16]  A. N. Brooks and T. J. R. Hughes, Streamline Up-
wind/Petrov-Galerkin formulations for convection 
dominated flows with particular emphasis on the 
incompressible Navier-Stokes equations, Comput. 
Meth. Appl. Mech. Eng., 32 (1982) 199-259. 

[17]  O. C. Zienkiewicz, R. L. Taylor and P. Nithiarasu, 
The Finite Element Method for Fluid Dynamics, 
Sixth ed. Elsevier Butterworth-Heinemann, Oxford, 
(2005). 

[18]  J. Kim and P. Moin, Application of a fractional 
step method to incompressible Navier-Stokes equa-
tions, J. Comput. Phys., 59 (1985) 308-323. 

[19]  G. Yagawa and M. Shirazaki, Parallel computing 
for incompressible flow using a nodal-based 
method, Comput. Mech., 23 (1999) 209-217. 

[20]  U. Ghia, K. N. Ghia and C. T. Shin, Hight-Re solu-
tions for incompressible flow using the Navier-
Stokes equations and a multigrid method, J. Com-
put. Phys., 48 (1982) 387-411. 

[21]  G. de Vahl Davis, Natural convection of air in a 
square cavity: A benchmark numerical solution, Int. 
J. Numer. Methods Fluids, 3 (1983) 249-264. 

[22]  M. A. Leal, H. A. Machado and R. M. Cotta, Inte-
gral transform solutions of transient natural convec-
tion in enclosures with variable fluid properties, Int. 
J. Heat Mass Transf., 43 (2000) 3977-3990. 

[23]  A. G. Malan, R. W. Lewis and P. Nithiarasu, An 
improved unsteady, unstructured, artificial com-
pressibility, finite volume scheme for viscous in-
compressible flows: part II. application, Int. J. Nu-
mer. Methods Eng., 54 (2002) 715-729. 

[24]  P. A. B. de Sampaio, P. R. M. Lyra, K. Morgan 
and N. P. Weatherill, Petrov-Galerkin solutions of 
the incompressible Navier-Stokes equations in 
primitive variables with adaptive remeshing, Com-
put. Meth. Appl. Mech. Eng., 106 (1993) 143-178. 

[25]  H. S. Yoon, J. B. Lee and H. H. Chun, A numerical 
study on the fluid flow and heat transfer around a 



 A. Malatip et al. / Journal of Mechanical Science and Technology 23 (2009) 775~789 789 
 

circular cylinder near a moving wall, Int. J. Heat 
Mass Transf., 50 (2007) 3507-3520. 

[26]  C. F. Lange, F. Durst and M. Breuer, Momentum 
and heat transfer from cylinders in laminar cross-
flow at 104≤Re≤200, Int. J. Heat Mass Transf., 41 
(1998) 3409-3430. 

[27]  J. Davalath and Y. Bayazitoglu, Forced convection 
cooling across rectangular blocks, J. Heat Transf., 
109 (1987) 321-328. 

[28]  M. Hriberšek and G. Kuhn, Conjugate heat transfer 
by boundary-domain integral method, Eng. Anal. 
Bound. Elem., 24 (2000) 297-305. 

 
Atipong Malatip received his 
B.S. degree in Mechanical En-
gineering from King Mongkut’s 
University of Technology North 
Bangkok, Thailand, in 2002. He 
then received his M.S. degree in 
Mechanical Engineering Chula-
longkorn University, Thailand, 

in 2005. He is currently pursuing a Ph.D. degree in 
Mechanical Engineering at Chulalongkorn University. 
His research interests include computational fluid 
dynamics and fluid-thermal-structural interaction.  
 

Niphon Wansophark received 
his B.S., M.S., and Ph.D. 
degrees in Mechanical Engi-
neering from Chulalongkorn 
University, Thailand in 1996, 
2000, and 2007, respectively. 
He is an Assistant Professor of 
Mechanical Engineering at 

Chulalongkorn University, Bangkok, Thailand. His 
research interests are numerical methods and finite 
element method. 

Pramote Dechaumphai re-
ceived his B.S. degree in Indus-
trial Engineering from Khon-
Kaen University, Thailand, in 
1974, M.S. degree in Mechani-
cal Engineering from Youngs-
town State University, USA in 
1977, and Ph.D. in Mechanical 

Engineering from Old Dominion University, USA in 
1982. He is currently a Professor of Mechanical En-
gineering at Chula-longkorn University, Bangkok, 
Thailand. His research interests are numerical meth-
ods, finite element method for thermal stress and 
computational fluid dynamics analysis. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


